Dual-frequency pattern scheme for high-speed 3-D shape measurement.

نویسندگان

  • Kai Liu
  • Yongchang Wang
  • Daniel L Lau
  • Qi Hao
  • Laurence G Hassebrook
چکیده

A novel dual-frequency pattern is developed which combines a high-frequency sinusoid component with a unit-frequency sinusoid component, where the high-frequency component is used to generate robust phase information, and the unit-frequency component is used to reduce phase unwrapping ambiguities. With our proposed pattern scheme, phase unwrapping can overcome the major shortcomings of conventional spatial phase unwrapping: phase jumping and discontinuities. Compared with conventional temporal phase unwrapped approaches, the proposed pattern scheme can achieve higher quality phase data using a less number of patterns. To process data in real time, we also propose and develop look-up table based fast and accurate algorithms for phase generation and 3-D reconstruction. Those fast algorithms can be applied to our pattern scheme as well as traditional phase measuring profilometry. For a 640 x 480 video stream, we can generate phase data at 1063.8 frames per second and full 3-D coordinate point clouds at 8.3 frames per second. These achievements are 25 and 10 times faster than previously reported studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating sinusoidal fringe by defocusing: potentials for unprecedentedly high-speed 3-D shape measurement using a DLP projector

This paper presents a technique that reaches 3-D shape measurement speed beyond the digital-light-processing (DLP) projector’s projection speed. For this technique, a “solid-state” binary structured pattern is generated with each micromirror pixel always being at one status (ON or OFF). By this means, any time segment of projection can represent the whole signal, thus the exposure time can be s...

متن کامل

Ultrafast 3-D shape measurement with an off-the-shelf DLP projector.

This paper presents a technique that reaches 3-D shape measurement speed beyond the digital-light-processing (DLP) projector's projection speed. In particular, a "solid-state" binary structured pattern is generated with each micro-mirror pixel always being at one status (ON or OFF). By this means, any time segment of projection can represent the whole signal, thus the exposure time can be short...

متن کامل

Employing dual frequency phase sensitive demodulation technique to improve the accuracy of voltage measurement in magnetic induction tomography and designing a labratoary prototype

Magnetic induction tomography (MIT) is a promising modality for noninvasive imaging due to its contactless technology. Being a non-contact safe imaging technique, MIT has been an appropriate method in compare to other electrical tomography. In this imaging method, a primary magnetic field is applied by excitation coils to induce eddy currents in the material to be studied and a secondary magnet...

متن کامل

High-speed three-dimensional profilometry for multiple objects with complex shapes.

This paper describes an easy-to-implement three-dimensional (3-D) real-time shape measurement technique using our newly developed high-speed 3-D vision system. It employs only four projection fringes to realize full-field phase unwrapping in the presence of discontinuous or isolated objects. With our self-designed pattern generation hardware and a modified low-cost DLP projector, the four desig...

متن کامل

Color N-ary Gray Code for 3-d Shape Measurement

A fringe projection method that uses a novel color N-ary Gray code has been developed for high-speed 3-D shape measurement. In this method, more than two graylevels in each color channel are used to create a colorcoded pattern. The code is designed to be self-normalizing so that an adaptive threshold method can be used to reduce decoding error and therefore increase measurement resolution and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 18 5  شماره 

صفحات  -

تاریخ انتشار 2010